Increased levels of type 1 interferon in a type 1 diabetic mouse model induce the elimination of B cells from the periphery by apoptosis and increase their retention in the spleen.
نویسندگان
چکیده
BACKGROUND The autoimmune disease type 1 diabetes mellitus (T1D) is associated with a defect in the immune response, which increases susceptibility to infection. We recently demonstrated that prolonged elevated levels of type 1 interferon (IFN) induce lymphocyte exhaustion during T1D. AIMS In the present study, we further investigated the effect of blocking the type I IFN receptor signaling pathway on diabetic dyslipidemia, in which an abnormal lipid profile leads to the exhaustion of B cells and alteration of their distribution and functions. METHODS T1D was induced in a mouse model by an intraperitoneal injection of a single dose (60 mg/kg) of streptozotocin (STZ). Three groups of mice were examined: a non-diabetic control group, a diabetic group and a diabetic group treated with an anti-IFN (alpha, beta and omega) receptor 1 (IFNAR1) blocking antibody to block type I IFN signaling. RESULTS We observed that induction of T1D was accompanied by a marked destruction of β cells and a reduction in the insulin levels in the diabetic group. Diabetic mice exhibited many changes, including alterations in their lipid profiles, expansion of splenic B cells, increased caspase-3, -8 and -9 activity, and apoptosis in peripheral B cells. Blocking type 1 IFN signaling in diabetic mice significantly returned the insulin and lipid profiles to normal levels, subsequently restored the B cell distribution, and rescued the peripheral B cells from apoptosis. CONCLUSION Our data suggest the potential role of type I IFN in mediating diabetic dyslipidemia and an exhausted state of B cells during T1D.
منابع مشابه
P 141: Mesenchymal Stem Cells as Treatment in Neuroinflammatory Disease
Mesenchymal stem cells can be obtained from deferent tissues like adipose tissue, umbilical cord, placenta, skin, bone marrow, etc. These cells have regulatory effects on all types of immune cells such as dendritic cell, natural killers and lymphocytes. Mesenchymal stem cells induce inhibitory phenotypes of Antigen Presenting Cells (APCs) following their activity. They also change T cells pheno...
متن کاملIncreased Expression of TRAIL and Its Receptors on Peripheral T-Cells in Type 1 Diabetic Patients
Background: Type-I diabetes is an autoimmune inflammatory disease in which pancreatic ß-cells are selectively destroyed by infiltrating cells. TNF-related apoptosis-inducing ligand (TRAIL) is a type-II membrane protein of the TNF superfamily which is expressed in different tissues, including pancreas and lymphocytes. In humans, TRAIL interacts with four membrane receptors. TRAIL-R1 and TRAIL-R2...
متن کاملEvaluation of proliferation and survival of spleen immune cells treated by Deacetylchitin nanoparticles on breast cancer mouse model
Background & Aims: Breast cancer is the most common carcinoma in women and one of the main causes of death in developed and developing countries. Today, compounds with immunolodulator properties can be replaced with routine drugs. One of them is Deacetylchitin. This study aimed to evaluate proliferation and survival of spleen immune cells treated by Deacetylchitin nanoparticles on breast c...
متن کاملLow Concentrations of Flavonoid - Rich Fraction of Shallot Extract Induce Delayed - Type Hypersensitivity and TH1 Cytokine IFN-gamma Expression in Balb/C Mice
Flavonoids are potentially immunomodulatory factors and it may be inferred that these phytochemicals contribute to immunomodulatory properties of the Allium family. In the present study, we investigated the potential mechanism underlying the immunomodulatory effect of shallot and its ethyl acetate (EA) fraction as flavonoid-rich sources. Ex vivo, effects of a hydroalcoholic extract of shallot, ...
متن کاملبررسی اثر مهاری سلولهای بنیادی مزانشیمی بافت چربی بر روی تکثیر سلولهای تک هستهای طحالی موش دیابتی C57BL/6 در محیط آزمایشگاه
Background: Type 1 diabetes (T1D) is a T-cell mediated autoimmune disorder in which pancreas beta-cell destruction causes insulin deficiency and hyperglycemia. In addition to daily insulin treatment, allogeneic islet transplant inT1D is another therapeutic way that needs immunosuppressive drugs to control autoimmune damage and graft rejection. Since life-long application of these drugs is ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology
دوره 35 1 شماره
صفحات -
تاریخ انتشار 2015